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gies of the two transition states varies from 4.2 kcal/mol 
for the parent tertiary system, down to 1.6 kcal/mol for 
2,7,7-trimethyl-2-norbornyl, and up to 7.1 kcal/mol for 
2,6,6-trimethyl-2-norbornyl. 

These results clearly establish the importance of 
steric effects as a factor in the exo: endo rate and product 
ratios in the norbornyl system. 
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Biosynthesis of Tetracyclines. X. Protetrone1 

Sir: 

A type of mutant frequently encountered in working 
with the demethyltetracycline-producing strains of 
Streptomyces aureofaciens is characterized by the de­
velopment of rust-colored pigmentation in colonies on 
agar plates. These mutants are often low or nonpro-
ducers of antibiotic activity but are active in cosyn-
thetic systems with other point-blocked mutants and are 
efficient converters of biosynthetic intermediates to 
produce antibiotic activity. One such isolate,2 ED-
1369, is typical of the group. Mutant ED1369 produces 
less than 1 m^g/ml of antibacterial activity (as demethyl-
chlortetracycline). It is effective in converting to the 
corresponding antibiotic each of the known tetracycline 
biosynthetic intermediates-, and it shows in mixed fer­
mentations a cosynthetic response3 with all other non-
coincident point-blocked S. aureofaciens mutants. 
The product of each ED1369 cosynthetic system is the 
particular antibiotic which is characteristic of the other 
member of the system; therefore we have come to con­
sider ED1369 to be the "universal acceptor" mutant 
and have long assumed it to be point blocked at a rela­
tively early site in the biosynthetic pathway to the tetra­
cyclines. As pretetramid is among the biologically 
convertible intermediates,4 it is evident that ED1369 
must be blocked at a point preceding that at which the 
pretetramids appear. 

We wished to determine whether, among the meta­
bolic products of ED1369, there might be substances 
recognizably related to the tetracyclines. Since much 
prior experience has indicated that the pigments of S. 
aureofaciens mutants are frequently tetracycline re­
lated,5,6 an investigation of the pigments of ED1369 
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constituted our starting point. The shaker-flask mash 
of this mutant is dark maroon and the pigment was 
found to be almost entirely associated with the mycelial 
solids. 

The isolation of 9,10-dihydro-4,5-dihydroxy-3-malon-
amoyl-9,10-dioxo-2-anthraceneacetic acid (protetrone, 
1) was accomplished by extraction into acidic tetra-
hydrofuran and fractional precipitation with hexane. 
The crude product was further purified by conversion 
to the sodium salt and back to the free acid, then re-
crystallized from acidified dimethyl sulfoxide-methylene 
chloride. After drying over P2O5 in vacuo, 1 was ob­
tained as an orange crystalline solid:7 mp 186-190° 
dec; C19Hi3NO8; Xmax (0.1 N HCl-methanol) rmx (e) 255 
(25,200), 276 sh (14,200), 286 sh (11,750), 432 (11,750); 
ir absorption max, cm - 1 : 1700 (CO2H), 1670 (quinone 
C=O), 1630 (amide C = O ) ; 5TMs (DMSO), ppm: 
3.80 (benzylic methylene), 3.89 (methylene of /3-keto 
amide), 5.28 (enol vinyl), 7.0-8.0 (complex of amide 
andaryl), 11.70(carboxyl), 12.32 (enol hydroxyl). 

Zinc dust distillation of 1 yielded anthracene; solu­
tion in sulfuric-boric acid initially showed a char­
acteristic absorption spectrum [Xmax m/j. (e): 246 (23,-
800), 274 (26,600), 295 (23,600), 510 (16,800), 538 
(16,500)] which slowly changed (24 hr at 25°) to essen­
tially the spectrum of the known naphthacenequinone,6 
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2. This product was also obtained in high yield by the 
dehydration of 1 in HBr-acetic acid: 2, mp >300°; 
C19H11NO7 H2O; Xmax (H2SO4-H3BO3) tan (&• 280 
(15,300), 297 (63,600), 418 (9600), 508 shoulder (8400), 
553 (17,500), 593 (22,000). Refluxing 1 in 58% HI-
phenol gave a moderate yield (30 % of theory) of pre­
tetramid (3), identified by the characteristic absorption 
spectra of the crystalline product.8 

The visible-uv absorption spectrum of 1 and the de­
hydration to 2 established that the partial structure of 
protetrone was 6 and this, together with further bio­
genetic considerations, suggested the possible struc­
tures for protetrone, 7 or 1. The choice between these 
was made possible by the observation that, on standing 

-C5H7O4N 

at room temperature for 8 days in DMSO solution, 
protetrone lost 1 mol of CO2

9 to yield an anthraquinone 
product, 4: mp 190-200° dec C18H13NO6; Xmax (0.1 
N HCl-methanol) tan (e): 256 (26,200), 287 sh (12,100), 
431 (11,450); 8TMS (DMSO), ppm: 2.3 and 2.4 (aryl 
methyl, split by keto-enol tautomer), 3.8 (methylene of 
/3-keto amide), 5.3 (vinyl proton of enol), 7.1-7.9 (com­
plex of aryl and amide), 12.2 (enol). Nmr spectra 
showed 4 to be a tautomeric keto-enol mixture having 
an aryl methyl group. Thermal degradation of 4 in re-
fluxing DMSO resulted in the further loss of the car-
boxamide group (possibly as HOCN) to yield the an­
thraquinone, 5: mp 197-199° dec; C17H12O5; Xmax 

(0.1 N HCl-methanol) mM («) 226 (32,200), 255 (23,200), 
278 sh (11,400), 288 (11,000), 430 (11,550); ir absorp­
tion max, cm-1: 1700 (hindered ArCOCH3), 1670 
(quinone C = O ) ; 5T M S (DMSO-MgHCOO)2, ppm: 
2.20 (acetyl), 2.5 (aryl methyl), 7.0-8.0 (complex of aryl 
protons), now having aryl methyl and acetyl methyl 
proton resonances in the nmr spectrum. These proper­
ties are consistent only with structure 1. 

Protetrone has shown no biological activity as a 
tetracyclines precursor, indicating that it is probably 
not an intermediate. The close relationship to pre­
tetramid, and therefore to the tetracyclines, however, 
suggests that 1 is a shunt product arising by oxidation of 
the corresponding anthrone C, which in turn is avail­
able because of the presence of a block in ED1369 for 
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the final cyclization reaction leading to pretetramid 
(Scheme I). 

Scheme I. Postulated Origin of Protetrone10 
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The biogenetic significance of the structure of pro­
tetrone is discussed in detail in the accompanying com­
munication.u The discovery of this incompletely 
cyclized polyketide renews hope that still earlier inter­
mediates, or structurally significant shunt products of 
these, may be stable enough to accumulate in blocked-
mutant fermentations. 
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Biosynthesis of Tetracyclines. XI1. The 
Methylanthrone Analog of Protetrone 

Sir: 
In an accompanying communication1 we have de­

scribed the isolation and structure determination of 
protetrone, an anthraquinone shunt product from the 
biosynthetic pathway to the 6-demethyltetracyclines. 

(1) Previous paper in this series: J. R. D. McCormick and E. R. 
Jensen, J. Am. Chem. Soc, 90, 7126(1968). 
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